# A Food and Nutrition Plan for Space Flight to Mars:

A Balanced, Plant-Rich, and Time-Restricted Diet to Minimize Health Risks from Space and Improve Metabolic Health

# Table of Contents

| Abstract                                                    | 2     |
|-------------------------------------------------------------|-------|
| Introduction                                                | 2     |
| The Role of Nutrition in Space                              | 2     |
| Health Risks Associated with Space Exploration              | 3     |
| Proposed Dietary Approach                                   | 4     |
| Body                                                        | 4     |
| Protein                                                     | 5     |
| Amounts and Timing                                          | 5     |
| Amino Acid Supplementation                                  | 7     |
| Protein Sources                                             | 7     |
| Carbohydrates                                               | 8     |
| Amounts                                                     | 8     |
| Types of Carbs                                              | 9     |
| Fats                                                        | 10    |
| Keto is a No-Go                                             | 10    |
| Types of Fats                                               | 11    |
| Micronutrients with Major Benefits                          | 13    |
| Careful Considerations                                      | 13    |
| Antioxidants                                                | 13    |
| Pre- and Pro-biotics                                        | 15    |
| Time-Restricted Feeding                                     | 15    |
| Addressing Food Production                                  | 16    |
| Conclusion                                                  | 17    |
| Appendices                                                  | 19    |
| Table 1. Nutrition Plan Summary                             | 19    |
| Table 2. Spaceflight FNP Micronutrient Levels and Rationale | 19-21 |
| Table 3. Metabolic Study Trial Results                      | 21    |
| Table 4. 1-Week FNP Diet Menu                               | 22-26 |
| References                                                  | 27    |

#### Abstract:

After decades of advancement, we are once again on the verge of human deep space exploration, with upcoming planned missions to the Moon and Mars. This food and nutrition plan considers macronutrients, micronutrients, and meal timing (i.e. intermittent fasting) to address human health risks in space and minimize the impact of space hazards. The proposed diet is designed to improve biomarkers of metabolic syndrome while also considering and accommodating the unique nutritional needs imposed by space exploration. This plan can be used pre-flight to improve metabolic health and can also be maintained over the course of a long-duration space mission.

# **Introduction:**

#### The Role of Nutrition in Space

Spaceflight presents environmental exposures that are unique from what we experience on earth. This imposes new and different risks to human health that must be considered and managed when planning a mission of any duration, especially long missions. Nutrition has an unrecognized capacity to optimize health and minimize disease risk. By creating dietary and behavioral recommendations that improve health enough for survival on Mars, we will certainly be able to improve the health of those who remain on Earth.

In the age of social and popular media, dietary fads are often over-represented. While it is exciting to stimulate public interest in nutrition, many times these trends are unsupported by controlled human studies and/or have undesirable side effects. Fresh scientific perspectives are always needed; however, a long-duration spaceflight trip is

not only financially expensive but also costly to astronaut health. It is imperative to use research-based evidence when formulating dietary plans and eating schedules for Mars-bound crew members.

# Health Risks Associated with Space Exploration

The two central human health hazards encountered in space are space radiation and microgravity (Figure 1). Apart from Apollo, all previously crewed missions have been

within low Earth orbit (LEO), where Earth's magnetosphere provides added radiation protection<sup>1</sup>. Long-term exploration missions to the Moon, Mars, and beyond will not have this additional protection and must endure increased ionizing radiation exposure. The main sources of space radiation are solar particle events (SPEs) and galactic cosmic rays (GCRs). Chronic GCR exposure is



a predominant health concern as GCRs contain heavy ions (HZE) which are difficult to

shield against due to their high energy and penetrability<sup>2</sup>. The effects of chronic GCR exposure are undefined, however, HZE are known to cause difficult-to-repair clustered DNA double strand breaks<sup>3</sup>.

Microgravity also imparts cellular changes which contribute to a host of disease pathologies and may even compound the adverse effects of radiation<sup>4</sup>. On a physical level, microgravity facilitates muscle and bone loss due to reduced gravitational loading and causes fluid shifts which lead to unfavorable cardiovascular responses<sup>5</sup> (Figure 1). Space radiation and microgravity each contribute to a range of adverse molecular changes which can compound upon one another and lead to tissue/physiologic changes (Figure 1). It is crucial for the proposed food and nutrition plan (FNP) to consider and address each of the spaceflight-associated effects.

#### **Proposed Dietary Approach**

Evidence demonstrates astronaut total energy expenditure (TEE) is either maintained or increased while in space as compared to on earth<sup>6,7</sup>. The ideal diet for long-term space flight is a balanced, sufficiently caloric diet. Many current popular nutrition fads are extremely shifted in their macronutrient distribution, such as ketogenic (mostly fat) and carnivore (mostly protein) diets. Given the specific space hazards and their associated molecular and physical risks, the diet best suited to long term spaceflight includes a balance of protein, fat, and carbohydrates.

Apart from what we eat, when we eat can also impart a significant influence on our health. There is evidence that intermittent fasting can induce positive changes in glucose metabolism and cardiovascular health<sup>8–10</sup>. The two most well-studied

intermittent fasting regimens in humans are alternate day fasting and daily timerestricted feeding. Many astronauts fail to meet energy intake requirements, which may further contribute to muscle degeneration and body mass loss during the mission<sup>11</sup>. For this reason, it would be unwise to conduct any caloric restriction as part of the FNP. There is some evidence that time-restricted eating, which does not require any caloric restriction, can offer some of the same positive metabolic effects as those seen with caloric restriction<sup>10,12</sup>. The proposed FNP employs 10-hr time-restricted eating window with 14-hr fasting interval each day.

At the 2020 Space Education and Strategic Applications Conference, Dr. Susan Jewell of Mars-Moon Astronautics Academy and Research Science (MMAARS, Inc.) noted that there are 3 P's to worry about when it comes to the challenges facing astronauts: Physical, Physiological, and Psychological. While the physical and physiological effects of nutrition are established, we must also consider the psychological effects of a nutrition plan, as restrictive diets can take a toll on participant mood and hinder diet adherence. Food variety and palatability are crucial to keep astronauts from skipping meals which would increase risk of bone and muscle loss<sup>13</sup>. In addition to numerous health benefits (as discussed in later sections), a macronutrient-balanced diet best allows for accommodating palatability and astronaut food preference to optimize dietary adherence.

## Body:

#### Protein

#### **Amounts and Timing**

Astronauts engage in high intensity resistance training to mimic gravitational loading and minimize bone and muscle loss. Despite these exercise countermeasures, crewmembers still tend to lose muscle mass and bone mass during spaceflight<sup>14</sup>. Where exercise countermeasures come up short, nutrition may be able to fill in the gap. Sufficient dietary protein is required to meet astronaut energy expenditures and support muscle repair. Energy requirements for astronauts include moderate to high protein (1.2-1.8 g/kg) consumption based on the DRI guidelines for a moderately active to active individuals<sup>15</sup>. The proposed FNP includes 20% (1.6g/kg) of total energy from protein. This in line with what is currently being consumed on the ISS and is a realistic and attainable amount<sup>16,17</sup>.

Timing and distribution of protein consumption throughout the day can also have significant impacts. Consuming protein within 1-3 hours post-exercise augments muscle repair and protein synthesis<sup>18</sup>. For protein consumption after the immediate post-exercise period, evidence supports evenly distributing protein portions in moderate amounts. A randomized-control trial in healthy males demonstrated consumption of an intermediate amount of protein (20g) every 6 hours during the 12-hr post exercise period significantly increased muscle protein synthesis compared to consumption of more frequent smaller protein doses or a less frequent large dose<sup>19</sup>. Similarly, a 7-day feeding study in healthy adults demonstrated significantly higher muscle protein synthesis rates when protein intake was spread out evenly over the course of the day compared to mostly being consumed in the evening meal<sup>20</sup>. Thus, for optimal muscle maintenance and growth, it is best to spread out protein intake evenly across the course of the day in moderate amounts (~30g/meal).

#### **Amino Acid Supplementation**

Protein and amino acid supplementation have been well studied for any potential ability to reduce muscle loss associated with spaceflight. However, the evidence is inconclusive as to whether such supplementation is effective. Some literature supports leucine supplementation to boost muscle protein synthesis<sup>21–23</sup>. However, a leucine-enriched high protein diet failed to prevent muscle loss induced by bed rest<sup>24</sup>. Results that may seem promising on the ground, such as excess protein diets reversing nitrogen and muscle losses during bed rest, can prove ineffective in space<sup>25,26</sup>. Currently, evidence does not support amino acid supplementation to mitigate spaceflight-induced muscle and bone loss.

#### **Protein Sources**

Protein source is also an important consideration given the difference in amounts of iron and sulfur in animal products compared to vegetable-based protein. Current ISS mission menus provide over double (23 ± 5 mg/d) the required amount of iron (10 mg/d) because of the use of fortified foods and the majority of protein coming from animal sources<sup>16</sup>. Iron is one of the more hazardous micronutrients to consume in excess because our bodies have no regulated method for iron excretion. Excess iron is associated with increased oxidative stress and increased risk of cardiovascular disease<sup>27</sup>. Even when inflight iron intake is lower than preflight intake, serum markers of iron status still increase during flight because of hematologic changes that increase destruction of nascent red blood cells and lead to iron release<sup>28–30</sup>. Future menus should keep spaceflight dietary iron close to the specified requirement and minimize risk of excess iron intake, which may exert potentially harmful effects especially during long-

duration missions. This includes limiting fortified foods and decreasing the amount of protein from animal sources.

Furthermore, animal protein has higher sulfur content than vegetable protein and is associated with increased acid load and bone loss<sup>31,32</sup>. Diets with predominantly vegetable-derived protein may have better outcomes for bone loss as they reduce urinary calcium excretion and increase urinary pH compared to animal-protein diets<sup>33,34</sup>. To address the potential hazards of excess iron and sulfur from animal products, the proposed diet sources its protein primarily from plants. Numerous meta-analyses conclude that there is not a notable difference between animal and plant-derived protein in supporting lean muscle mass retention and muscle strength<sup>35,36</sup>. Deriving most of the dietary protein from plant sources will also be more friendly to on-board food production as discussed in a later section.

#### Carbohydrates

#### Amounts

The proposed FNP derives 45% of total energy from carbohydrates. On ISS missions, carbohydrates have typically composed ~50% of energy intake and there have not been any noted adverse effects of carbohydrate consumption in this range<sup>16,17</sup>. However, there are concerns over spaceflight-induced insulin resistance, as shown during bedrest and spaceflight studies<sup>37,38</sup>. The central drivers of insulin resistance are obesity and sedentary behavior, but it is also influenced by other factors such as inflammation, lipid metabolism, and the gut microbiome<sup>39</sup>. Because "obese" and "sedentary" are not adjectives that can be accurately applied to the typical astronaut, the insulin resistance

observed inflight is likely originating elsewhere. The proposed nutrition plan includes measures to improve other known factors of insulin resistance including inflammation (Carbohydrate and Fat Sections), lipid metabolism (Fat Section), and gut health (Carbohydrate and Micronutrient Sections).

#### **Types of Carbs**

Taking advantage of the types of carbohydrates included in the FNP will further aid in addressing critical space health risks. Inflammation is a prevalent spaceflight health concern, as bedrest and spaceflight studies exhibit increased inflammatory biomarkers<sup>40,41</sup>. Several spaceflight-induced cellular stresses such as increased oxidative damage, mitochondrial dysfunction, and physiological stresses such as fluid shifts, poor gastro-intestinal (GI) health, and immune responses all drive inflammatory responses in the body (Figure 1). GI health has become increasingly linked to inflammation, and intestinal permeability has been proposed as a new target for prevention and therapy of inflammatory disease<sup>42</sup>. Intestinal permeability refers to the ability of the intestinal barrier to shield against invasion from bacteria or toxins while also regulating and maintaining electrolyte and water absorption<sup>42</sup>. Beyond compromising intestinal function and homeostasis, increased intestinal permeability also increases inflammation in tissues such as liver and adipose, and can lead to insulin resistance<sup>42</sup>.

Nutritional approaches to strengthen the intestinal barrier and reduce permeability include increased dietary fiber intake (especially soluble fiber), decreased intake of simple sugars (ex. fructose), and probiotics<sup>42,43</sup>. Following consumption, soluble fiber becomes undigested carbohydrate that the microbiome ferments into small organic

molecules such as short-chain fatty acids (SCFA) which possess anti-inflammatory functions<sup>44,45</sup>. Diets high in fructose and other simple sugars increase intestinal permeability, the risk of bacterial invasion, and can lead to low-grade liver inflammation which facilitates increased liver fat deposition and insulin resistance<sup>42</sup>. Thus, dietary fiber and simple sugar consumption have significant health implications for GI permeability and downstream inflammation and metabolic dysfunction. The diet plan minimizes simple sugars and includes a healthy portion of fiber (40 g/d) which is slightly more than current ISS menu offerings (~33 g/d) (Table 1)<sup>16</sup>. In healthy individuals, high levels of fiber intake are not associated with any adverse effects or toxicity. Increased fiber intake may also help address the potentially adverse increase in inflight iron status by decreasing iron absorption and improving iron homeostasis<sup>28</sup>.

# Fat

#### Keto is a No-Go

One of the latest nutrition fads is the ketogenic diet, which consists of high fat, modest protein, and minimal carbohydrate composition. It has been praised for its potential benefits in short-term effects of weight loss, decreased cardiovascular disease risk, and improved glucose metabolism<sup>46</sup>. However, the restrictiveness of the diet and the lack of evidence defining long-term effects make it a less desirable option for a spaceflight nutrition plan. Further, there is conflicting evidence for the relationship between the ketogenic diet and lipid profiles, with potential concern for dyslipidemia<sup>46–49</sup>. This is particularly relevant as one of the physiologic consequences of spaceflight is increased blood cholesterol and liver fat deposition<sup>50</sup>.

Furthermore, increased risk of renal stones is a noted consequence of the ketogenic diet due to reduced urinary pH, and astronauts are already at an elevated risk of renal stones due to increased bone resorption<sup>51–54</sup>. On a similar note, there is also evidence that a short-term ketogenic diet impairs markers of bone modeling and remodeling<sup>55</sup>. Thus, the ketogenic diet may potentially exacerbate astronaut health challenges on multiple fronts including bone loss, dyslipidemia, renal stone risk, and dietary adherence given the restrictive nature.

A moderate amount of dietary fat is favorable given the needs for adequate dietary protein and carbohydrates. Also, evidence demonstrates increased gut permeability with high fat and Western (high fat/high carb) diets<sup>42</sup>. Thus, a balanced diet appears to be the best fit to sustain crewmember energy needs and support gut health.

#### **Types of Fats**

It is also important to optimize the types of fats in the diet to reduce disease risk. For example, evidence supports increased omega-3 fatty acid consumption lowers inflammation, blood pressure, and plasma triglycerides<sup>56–58</sup>. These omega-3 benefits are significant and particularly applicable given the observed adverse effects of spaceflight on cardiovascular health, blood lipids, and liver lipid deposition<sup>11,59</sup>. Omega-3 consumption also has implications for bone health, as a bedrest study observed a negative correlation between NTX (a urinary marker of bone resorption) and omega-3 FA intake (Figure 2, Left)<sup>60</sup>. Though no specific studies on inflight omega-3 FA consumption have been conducted, there is a significant correlation between inflight fish intake and whole body bone mineral density (Figure 2, Right)<sup>60</sup>. Thus, there is evidence to support higher intake of omega-3-rich foods in flight, which will likely have positive



FA consumption and bone resorption in bed rest (left, n = 16, Pearson r = 0.46, p < .05) and the relationship between inflight fish consumption and whole-body bone mineral density (BMD) upon landing (right, n = 24, Pearson r = -0.62, p < .01). Figures adapted from Zwart 2010 (51).

implications for bone health, inflammation, and cardiovascular health. The three main forms of omega 3 FA are alpha-linolenic acid (ALA) (common in plant seeds and oils), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) (common in fish and other seafood). Because fish can also contain notable levels of heavy metals, the proposed FNP will include ALA-rich food sources and DHA and EPA from supplements to minimize toxin exposure<sup>61</sup>.

Recent concern has been raised over consumption of seed oils, a common source of omega-6 FA, as an underlying cause and contributor of disease development. The basis for this concern likely stems from the ratio of omega 6 to omega 3 FA intake, as a higher ratio is associated with obesity and cardiovascular disease<sup>62,63</sup>. The proposed FNP includes increased omega 3 FA intake (3g/d vs. 1g/d current RDA) to decrease the ratio of omega 6 to omega 6 to omega 3 and hopefully minimize these observed risks. Because olive oil is associated with more health benefits than most seed oils, the FNP will include olive oil as the main cooking oil for prepared foods.

## **Micronutrients with Major Benefits**

#### **Careful Considerations**

Vitamin and mineral intake influence overall health and can address some spaceflightassociated disease risks. However, when it comes to micronutrients and dietary supplements, there can sometimes be "too much of a good thing". For example, vitamin A supplementation (at 2x the RDA) was investigated to potentially address flightinduced decreases in serum retinol levels, however, vitamin A intake at this level was found to increase bone resorption and fracture risk<sup>64–66</sup>. Thus, we must be mindful of effects of high intake when proposing supplementation and only include supplements that have been extensively tested, are well-tolerated, and produce consistent outcomes in human trials. Micronutrient intake levels and rationale for the proposed FNP are extensively outlined in Table 2.

#### **Tackling Oxidative Stress**

When considering space radiation and resultant oxidative stress, one of the first nutritional countermeasures that come to mind is antioxidants. Mitochondria are particularly vulnerable to damage and dysfunction associated with space hazards (Figure 1). Mitochondrial DNA is more sensitive to oxidative damage than nuclear DNA and reactive oxygen species damage mitochondrial oxidative phosphorylation complexes, which in turn gives rise to more oxidative stress (Figure 1)<sup>11,67</sup>. CoQ10, also known as ubiquinol, is a less well-known nutrient that has gained attention in recent years. It is an antioxidant and a necessary component of the electron transport chain complex which supports mitochondrial function and energy production. Circulating

CoQ10 levels rapidly deplete after intense exercise, but CoQ10 supplementation minimized exercise-induced depletion and decreased cytosolic reactive oxygen species (ROS) following intense exercise in young adults<sup>68</sup>. Clinical trials of CoQ10 supplementation have also shown beneficial effects on glucose metabolism, lipid profiles, and inflammation<sup>69–72</sup>. There is ample evidence to support CoQ10 as highly safe well-tolerated supplement<sup>73–75</sup>. CoQ10 supplementation (200mg/d) is included in the proposed FNP to support mitochondrial health, reduce oxidative stress, and perhaps benefit astronaut glucose metabolism, blood lipids, and inflammation.

In addition to CoQ10, curcumin (an antioxidant found in turmeric) is associated with reduced inflammation, improved muscle function, reduced muscle damage, and reduced muscle pain after exercise<sup>76</sup>. Numerous randomized controlled trials have demonstrated the safety and effectiveness of curcumin supplementation in improving liver function, blood lipid profiles, and markers of metabolic syndrome<sup>77</sup>. Participants were found to tolerate high levels without notable side effects<sup>76</sup>. Supplemental curcumin (200mg/d) is included in the proposed diet plan for its potential to address concerns for inflight inflammation, muscle health, and insulin resistance. The dosage of 200mg/d was chosen because it is on the lower end of the effective range of clinical trial doses<sup>76,77</sup>. The amounts of curcumin and CoQ10 supplementation are well below doses associated with adverse effects. Food sources of curcumin (ex. turmeric) and CoQ10 (ex. liver) are less common in the average diet and it may be hard to consume enough of these foods to reach doses associated with beneficial effects. Thus, the proposed FNP includes curcumin and CoQ10 as supplements.

Notably, animal research supports the use of an antioxidant cocktail to reduce cellular damage from HZE space radiation<sup>78–80</sup>. However, current evidence in human trials is inconclusive as to whether antioxidant cocktails improve oxidative stress, muscle damage, and exercise performance outcomes<sup>81,82</sup>. More work is needed to investigate specific micronutrient mixtures and identify safe doses that elicit consistent observed benefits and minimize adverse effects in humans. Because the micronutrients that typically comprise antioxidant supplements (vit. A, C, E) are common in food sources, the proposed FNP does not include a specific antioxidant mixture supplement but maximizes consumption of antioxidant-rich foods.

#### **Prebiotics and Probiotics**

Nutrition plays a large role in gut health and facilitates changes in intestinal health and microbial diversity<sup>42,83</sup>. Prebiotics refers to the foods that feed the gut microbiome, such as soluble fiber. By increasing fiber intake (especially soluble fibers such as oats, flax seeds, nuts, etc.), there is more undigested fiber that passes to the colon to support the microbiome. By consuming less simple-sugars and carbohydrates with more fiber, we are also decreasing intestinal permeability and supporting gut health<sup>42</sup>.

Apart from prebiotic carbohydrate intake, probiotics can also support intestinal permeability<sup>42,84,85</sup>. Probiotics refers to the bacterial species that we consume to support a diverse range of healthy, beneficial bacteria. Spaceflight has been shown to reduce gut microbe diversity. The proposed FNP includes a once daily probiotic supplement with numerous bacterial strains to improve microbiome diversity and function.

#### **Time-Restricted Feeding**

Recent social media pushes and studies have shed light onto the potential benefits of intermittent fasting. Intermittent fasting stimulates the "metabolic switch" to get the body to regularly mobilize fuel stores (oxidize more fats, but without going to ketotic state, which may impose risks for astronauts as previously mentioned). A few different eating schedules fall under the umbrella of intermittent fasting including intermittent energy restriction (IER) and time-restricted feeding (TRF). In TRF, all food for the day is consumed in a certain time window which is then followed by a fasting period (ex. 8 hrs/16 hrs, 12 hrs/12 hrs). One of the advertised benefits of TRF is that caloric restriction is not necessary to see similar metabolic benefits as with IER.

There is human evidence that the benefits of intermittent fasting are not entirely from caloric restriction or weight loss and TRF can improve markers of cardiometabolic health<sup>12</sup>. There is evidence for positive effects on the cardiovascular system such as lower blood pressure, decreasing atherosclerosis progression, benefits for T2D, as well as lipid profiles and inflammation<sup>9</sup>. Most of these positive effects are observed with an early TRF schedule (8am-2pm eating, 2pm-8am fasting)<sup>12,86</sup>. Notably, a randomized control trial of TRF in resistance-trained young males concluded that TRF does not reduce lean body mass or muscular improvements with resistance training<sup>87</sup>. This is important when considering space-induced challenges of bone and muscle loss.

Proposed FNP includes a 10-hour daytime eating window and 14-hour nighttime fasting window, aimed at getting the benefits of TRF without being too restrictive and ensuring crewmembers have time to consume all their food. Coordinating the fasting period to be mostly overnight may also help regulate crewmember circadian schedules, which are commonly altered in spaceflight<sup>11</sup>. The diet and eating schedule to be kept onboard

during the mission should be made familiar pre-flight so astronauts are accustomed to the schedule and food types prior to the mission.

#### Addressing Food Production and Nutritional Stability

Given the proposed diet is mainly composed of vegetable-based protein and fats, this bodes well for sustainable food production to support nutritional needs with reduced dependence on resupply missions. The Vegetable Production System (VEGGIE) is a plant growth system currently aboard the ISS, which cultivates high quality produce. The volume of food output from the current VEGGIE system makes a minimal contribution to inflight food supply, as almost all food comes packaged in frequent resupply missions. For the proposed FNP, most of the food would also be prepackaged, however, a long-duration spaceflight journey to Mars would need to expand VEGGIE's capacity for regular food production.

Ideal crops would have low space and water needs and high nutrient density. A larger variety of plants would also translate to increased dietary variety, which is associated with increased probability of nutritional adequacy<sup>88</sup>. Food that is not produced on board will be cooked and prepared pre-flight and should only require heating and/or hydration prior to consumption. The food prepared on earth should ideally be made using organic foods to minimize pesticides and toxins exposure. Food will be dried, freeze-dried, cooked, packaged, and vacuum sealed to preserve the food, maximize space, and minimize load weight.

#### Conclusion

Given the current evidence on spaceflight biology and health changes, as well as the molecular and physiologic effects of space hazards, there are multiple angles by which nutrition can address these changes. The proposed FNP includes time-restricted diet of balanced macronutrient composition with 45% of energy from carbohydrates, 35% of energy from fat, and 20% of energy from protein. Most of the dietary protein will come from plant sources to reduce excess iron and sulfur consumption and support expanding on board food production to contribute more regularly to diet. Protein intake will also be evenly spread across the feeding window to best support muscle synthesis and prevent muscle loss. Dietary fats will be predominantly mono- and polyunsaturated, with an abundance of omega-3 FA from food and supplements. Carbohydrate sources will be rich in fiber and poor in simple sugars such as fructose.

On the micronutrient front, the proposed FNP includes daily supplementation with Vitamin D, Omega-3 FA, CoQ10, Curcumin, and pro-biotics to support bone health, inflammation, oxidative stress, and gut health. This diet can be used before or during a long duration spaceflight mission or analog mission to improve metabolic markers while also addressing the nutritional requirements that space hazards impose. A metabolic study (n = 1) of the proposed FNP was conducted for two weeks where the participant followed the FNP description for their personal calorie needs (~2,200 kcal/d). Participant's fasting blood glucose and blood pressure were taken one day prior to initiating the diet, and one day after the two-week diet period (Table 3). An example menu for one week of the study is included in Table 4. After following the FNP for two weeks, the participant's fasting blood sugar decreased by 5 mg/dL, systolic blood pressure decreased by 6 mm Hg, and diastolic blood pressure decreased by 9 mm Hg.

The results of this metabolic study suggest that the proposed FNP can maintain or improve metabolic markers while still managing the prominent health risks associated with spaceflight.

# **Appendix**

| Space Food and Nutrition                | n Plan Summary    |
|-----------------------------------------|-------------------|
| Percentage Protein                      | (20%)             |
| Percentage Fat                          | (35%)             |
| Percentage Carbohydrates                | 6 <b>(45%)</b>    |
| Dietary Fiber                           | 40 g/d            |
| Carbohydrates Classified b              | by Glycemic Index |
| High (≥ 70)                             | 15% Total Carbs   |
| (Ex. Sugars/Starches)                   |                   |
| Medium (56-69)                          | 25% Total Carbs   |
| (Ex. Potatoes/Corn/White I              | Rice)             |
| Low (≤55)                               | 60% Total Carbs   |
| (Ex. Fruits/Veg/Nuts/Beans              | s)                |
| Micronutrient Supplementa               | ation:            |
| <ul> <li>Vitamin D (800 IU/c</li> </ul> | (k                |
| <ul> <li>CoQ10 (200 mg/d)</li> </ul>    |                   |
| <ul> <li>Curcumin (200 mg/</li> </ul>   | ′d)               |
| <ul> <li>Omega 3 (EPA/DH)</li> </ul>    | A) (1,800 mg/d)   |
| Pro-biotics:                            |                   |
| <ul> <li>Daily Probiotic Sup</li> </ul> | plement Mixture   |
| Food Intake Intervals                   |                   |
| <ul> <li>Eating (8am-6pm) (</li> </ul>  | (10 hrs)          |
| <ul> <li>Fasting (6pm-8am)</li> </ul>   | (14 hrs)          |

 Table 1. Nutrition Plan Summary.
 Proposed Food and Nutrition Plan (FNP) during long-term spaceflight including a Mars mission.

| Macronutrients |            |         |                    |                                                                                                                                                                                  |
|----------------|------------|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Earth DRI  | FNP (%  | FNP (total kcal,   | Rationale                                                                                                                                                                        |
|                | (% energy) | energy) | grams) (for a      |                                                                                                                                                                                  |
|                |            |         | 2,200 kcal/d diet) |                                                                                                                                                                                  |
| Protein        | 10-35%     | 20%     | 440 kcal (110 g)   | <ul> <li>Adequate protein to support lean<br/>mass retention and increased<br/>exercise<sup>15–17</sup>.</li> </ul>                                                              |
| Fat            | 20-35%     | 35%     | 770 kcal (86 g)    | <ul> <li>High fat diet not good for gut<br/>health<sup>42</sup>.</li> <li>HFD may potentially worsen<br/>already increased inflight blood<br/>lipids<sup>46-50</sup>.</li> </ul> |

| Total<br>Carbohydrates              | 45-65%                                     | 45%                      | 990 kcal                                                           | <ul> <li>High carb diet (western) and<br/>simple sugars are not good for gut<br/>health<sup>42</sup>.</li> <li>Inclusion of fiber rich carbs could<br/>as prebiotic for gut health<sup>42</sup>.</li> </ul>                                                  |
|-------------------------------------|--------------------------------------------|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Micronutrients                      |                                            |                          |                                                                    | Defende                                                                                                                                                                                                                                                      |
|                                     | Earth DRI                                  | UL                       | FNP                                                                | Rationale                                                                                                                                                                                                                                                    |
| Vitamin A                           | 700 <sup>♀</sup> /900 <sup>♂</sup><br>ug/d | 3,000<br>ug/d            | 800 ug/d                                                           | <ul> <li>to post-flight<sup>66</sup>.</li> <li>2X the DRI was associated with higher bone loss in bed rest studies<sup>65</sup>.</li> <li>Good for gut health<sup>42</sup>.</li> </ul>                                                                       |
| Vitamin B1<br>(Thiamin)             | 1.1 <sup>♀</sup> /1.2 <sup>♂</sup><br>mg/d | None                     | 1.5 mg/d                                                           | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> </ul>                                                                                                                                                                           |
| Vitamin B2<br>(Riboflavin)          | 1.1 <sup>♀</sup> /1.3 <sup>♂</sup><br>mg/d | None                     | 2.0 mg/d                                                           | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> </ul>                                                                                                                                                                           |
| Vitamin B3<br>(Niacin)              | 14 <sup>♀</sup> /16 <sup></sup><br>mg/d    | 35 mg/d                  | 20mg<br>NE/d                                                       | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> </ul>                                                                                                                                                                           |
| Vitamin B5<br>(Pantothenic<br>Acid) | 5 mg/d                                     | None                     | 5 mg/d                                                             | <ul> <li>Same as earth DRI and current NASA<br/>spaceflight requirement<sup>16</sup></li> </ul>                                                                                                                                                              |
| Vitamin B6                          | 1.3 mg/d                                   | 100<br>mg/d              | 2.0 mg/d                                                           | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> <li>Stored in muscle, muscle loss increases B6<br/>excretion in bed rest<sup>89</sup>.</li> <li>No current evidence for inflight B6 status<br/>changes<sup>17</sup>.</li> </ul> |
| Vitamin B9<br>(Folate)              | 400 DFE/d                                  | 1,000<br>DFE/d           | 400<br>DFE/d                                                       | <ul> <li>Same as earth DRI and current NASA spaceflight requirement<sup>16</sup>.</li> <li>Decreased RBC folate over long-term ISS mission, likely related to decreased folate intake during flight<sup>66</sup>.</li> </ul>                                 |
| Vitamin B12                         | 2.4 ug/d                                   | None                     | 2.4 ug/d                                                           | <ul> <li>Same as earth DRI and current NASA<br/>spaceflight requirement<sup>16</sup>.</li> </ul>                                                                                                                                                             |
| Vitamin C                           | 75 <sup>♀</sup> /90 <sup>♂</sup><br>mg/d   | 2,000<br>mg/d            | 100 mg/d                                                           | <ul> <li>Same as earth DRI and current NASA<br/>spaceflight requirement<sup>16</sup>.</li> </ul>                                                                                                                                                             |
| Calcium<br>(mg/d)                   | 1,000 mg/d                                 | 2,500<br>mg/d            | 1,000<br>mg/d                                                      | <ul> <li>Inflight negative calcium balance is<br/>common- increased urinary and fecal<br/>calcium from bone loss<sup>17</sup>.</li> <li>Excess dietary calcium (2,000mg/d) will not<br/>reduce bone loss<sup>90</sup>.</li> </ul>                            |
| Copper (ug/d)                       | 900 ug/d                                   | 10,000<br>ug/d           | 1.5-3.0<br>mg/d                                                    | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> </ul>                                                                                                                                                                           |
| Vitamin D                           | 600 IU/d<br>(15ug)                         | 4,000<br>IU/d<br>(100ug) | 1200<br>IU/d<br>(400 IU/d<br>Food)<br>(800 IU/d<br>Supplem<br>ent) | <ul> <li>Same dietary food requirement as NASA (10ug or 400 IU/d) excluding supplementation<sup>16</sup>.</li> <li>800 IU/d supplementation shown to sustain vitamin D status in long duration spaceflight<sup>91</sup>.</li> </ul>                          |
| Vitamin E                           | 15 mg/d                                    | 1,000<br>mg/d            | 20 mg/d                                                            | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> </ul>                                                                                                                                                                           |
| lodine (ug/d)                       | 150 ug/d                                   | 1,100<br>ug/d            | 150 ug/d                                                           | <ul> <li>Same as earth DRI and current NASA spaceflight requirement<sup>16</sup>.</li> </ul>                                                                                                                                                                 |

| Iron                 | 18 <sup>♀</sup> /8 <sup>♂</sup><br>mg/d         | 45 mg/d       | 10 mg/d       | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> <li>Excess iron may worsen oxidative stress<sup>27</sup>.</li> <li>Iron status is already elevated during<br/>spaceflight from hematologic changes<sup>28–30</sup>.</li> </ul>                                                                                                          |
|----------------------|-------------------------------------------------|---------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vitamin K            | 90 <sup>♀</sup> /120 <sup>♂</sup><br>ug/d       | None          | 100 ug/d      | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> </ul>                                                                                                                                                                                                                                                                                   |
| Magnesium<br>(mg/d)  | 320 <sup>♀</sup> /420 <sup></sup><br>mg/d       | None          | 350 mg/d      | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> </ul>                                                                                                                                                                                                                                                                                   |
| Phosphorus<br>(mg/d) | 700 mg/d                                        | 4,000<br>mg/d | 1,000<br>mg/d | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> </ul>                                                                                                                                                                                                                                                                                   |
| Potassium<br>(mg/d)  | 2,600 <sup>♀</sup> /3,40<br>0 <sup>♂</sup> mg/d |               | 3,500<br>mg/d | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> </ul>                                                                                                                                                                                                                                                                                   |
| Selenium<br>(ug/d)   | 55 ug/d                                         |               | 70 ug/d       | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> <li>Serum selenium decreases about 10% after<br/>long-term ISS mission<sup>66</sup></li> <li>No observed functional effects of decrease<br/>in serum selenium.</li> </ul>                                                                                                               |
| Sodium<br>(mg/d)     | 1,500 mg/d                                      |               | 2,000<br>mg/d | <ul> <li>NASA reduced ISS menu sodium content<br/>from 5,300 mg/d to 3,000 mg/d as high<br/>sodium exacerbates bone loss and may<br/>worsen vision changes by increasing<br/>intracranial pressure<sup>92</sup>.</li> <li>Bringing sodium closer to the earth DRI<br/>may better address inflight bone loss, vision<br/>changes, and high blood pressure.</li> </ul> |
| Zinc (mg/d)          | 8 <sup>♀</sup> /11ẩ<br>mg/d                     | 40 mg/d       | 15 mg/d       | <ul> <li>Same as current NASA spaceflight<br/>requirement<sup>16</sup>.</li> <li>Trend for decreased serum zinc after flight<br/>than before flight of a long-term ISS<br/>mission<sup>66</sup>.</li> </ul>                                                                                                                                                          |

**Table 2. Spaceflight FNP Micronutrient Levels and Rationale.** Earth Dietary Reference Intakes (DRI) taken from National Institute of Health (NIH) DRI Reports and Tables for adult men and women ages 31-50<sup>93–96</sup>. Proposed Food and Nutrition Plan (FNP) intake values for long-term spaceflight consider current NASA spaceflight requirements, observed inflight physiologic changes, and address physical and molecular health concerns of spaceflight. Data and rationale for biotin, choline, chloride, chromium, fluoride, manganese, and molybdenum have not been included as there is low concern for deficiency with a typical diet and NASA has no current dietary requirement. <sup>Q</sup>Recommended daily intake for adult female.

| Marker                | <b>Pre-FNP Trial</b> | <b>Post-FNP Trial</b> |
|-----------------------|----------------------|-----------------------|
| Fasting Blood Glucose | 98 mg/dL             | 93 mg/dL              |
| Blood Pressure        | 134/82 mm Hg         | 128/73 mm Hg          |

Table 3. Metabolic Study Trial Results. Metabolic markers of fasting blood glucose and blood pressure were measured one day prior to the two-week FNP trial and one day following the completion of the FNP trial.

|--|

|                                                                                           | Calories | Carbs | Fat | Protein | Cholest | Sodium  | Sugars | Fiber |
|-------------------------------------------------------------------------------------------|----------|-------|-----|---------|---------|---------|--------|-------|
| Breakfast – 8am                                                                           | •        |       |     | •       | •       |         |        |       |
| Wegmans - Roasted Tomato<br>Salsa, 2 Thsp                                                 | 10       | 2g    | 0g  | 0g      | mg      | 220mg   | 1g     | g     |
| Monterey Mushrooms -<br>Whole Mushrooms 3 oz                                              | 20       | 2g    | 0g  | 3g      | 0mg     | 15mg    | g      | 1g    |
| Olive Oil 0 25 thsp                                                                       | 30       | DΟ    | 30  | 00      | 0ma     | 0mg     | 00     | 00    |
| Wegmans - Whole Wheat<br>Multigrain Tortillas, 1 wrap                                     | 190      | 35g   | 5g  | 6g      | Omg     | 370mg   | 0g     | 5g    |
| Bell Pepper - Red Bell<br>Pepper Chopped, 0.25 cup<br>chopped                             | 10       | 2g    | Og  | Og      | 0mg     | 1mg     | 1g     | Og    |
| Wegmans - Cheese, Sharp<br>Cheddar, 1 oz (about inch<br>cube)                             | 110      | Og    | 9g  | 7g      | 30mg    | 180mg   | Og     | Og    |
| Large Egg - One Large Egg,<br>1.5 each                                                    | 105      | Og    | 8g  | 9g      | 0mg     | 98mg    | Og     | 0g    |
| Skim Milk - Skim Milk, 1 cup                                                              | 80       | 11g   | 0g  | 8g      | 5mg     | 110mg   | 11g    | 0g    |
| Lunch – 12pm                                                                              |          |       |     |         |         |         |        |       |
| Sauce - Wegmans Teriyaki, 1<br>tbsp                                                       | 20       | 5g    | g   | 1g      | mg      | 255mg   | 4g     | g     |
| Wegmans - Steamables<br>Whole Grain Brown Rice,<br>Quinoa & Lentils, 1 cup                | 240      | 46g   | 4g  | 7g      | 0mg     | 420mg   | g      | 4g    |
| Edamame - Shelled<br>Soybeans (Frozen), 0.5 Cup<br>(75g)                                  | 100      | 9g    | 3g  | 8g      | mg      | 30mg    | 1g     | 4g    |
| Stew Beef - Stew Beef, 0.3<br>lb(s)                                                       | 204      | 0g    | 8g  | 29g     | 78mg    | 84mg    | 0g     | 0g    |
| Dinner – 5pm                                                                              |          |       |     |         |         | -       |        |       |
| Fillippo Berrio - Grilled<br>Vegetable Pesto, 0.38 cup                                    | 255      | 6g    | 26g | 2g      | 0mg     | 510mg   | 5g     | 2g    |
| Explore Cuisine - Green<br>Lentil Penne (Organic), 112 g                                  | 400      | 70g   | 2g  | 24g     | 0mg     | 0mg     | 2g     | 6g    |
| Snacks                                                                                    |          |       |     |         |         |         |        |       |
| Mott's - Mixed Berry<br>Applesauce - Snack & Go, 1<br>Pouch ( <i>2 pm</i> )               | 40       | 10g   | Og  | Og      | mg      | 5mg     | 8g     | 1g    |
| Mamma Chia - Chia Squeeze<br>Vitality Snack - Wild<br>Raspberry, 1 pouch ( <i>10 am</i> ) | 70       | 10g   | 3g  | 2g      | Omg     | 0mg     | 7g     | 3g    |
| Veggie Caesar Salad, 1<br>serving(s) (2 pm)                                               | 199      | 10g   | 16g | 5g      | 0mg     | 137mg   | 1g     | 4g    |
| TOTAL:                                                                                    | 2.083    | 218a  | 87a | 111a    | 113ma   | 2,435mg | 41a    | 30g   |

#### <u>Tuesday</u>

|                                                                             | Calories | Carbs | Fat | Protein | Cholest | Sodium | Sugars | Fiber |
|-----------------------------------------------------------------------------|----------|-------|-----|---------|---------|--------|--------|-------|
| Breakfast – 8am                                                             |          |       |     |         |         |        |        |       |
| Spectrum - Cold Milled<br>Organic Premium Ground<br>Flaxseed, 2 Tbsp. (14g) | 70       | 4g    | 6g  | Зg      | 0mg     | 5mg    | 0g     | 3g    |
| Trader Joe's - Freeze Dried<br>Banana Slices,<br>Unsweetened, 35 gram       | 130      | 31g   | Og  | 2g      | mg      | mg     | 27g    | 2g    |
| Trader Joe's - Organic Gluten<br>Free Oatmeal Classic, 2<br>container (57g) | 440      | 76g   | 8g  | 16g     | 0mg     | 400mg  | 2g     | 12g   |
| Skim Milk - Skim Milk, 1 cup                                                | 80       | 11g   | 0g  | 8g      | 5mg     | 110mg  | 11g    | 0g    |
| Lunch – 12pm                                                                |          |       |     |         |         |        |        |       |
| Chicken Breast Tenderloins -<br>Tenderloins, 4 oz                           | 110      | 1g    | 1g  | 26g     | 55mg    | 40mg   | 1g     | Og    |
| Trader Joe's - Quinoa<br>Cowboy Veggie Burger, 2<br>Burger                  | 360      | 44g   | 16g | 10g     | 0mg     | 560mg  | 4g     | 12g   |

| Dinner – 5 pm                              |       |      |      |      |      |         |     |     |
|--------------------------------------------|-------|------|------|------|------|---------|-----|-----|
| Wegmans - Sesame Garlic                    | 40    | 9g   | 0g   | 1g   | 0mg  | 320mg   | 8g  | 1g  |
| Sauce, 2 tbsp.                             |       |      |      |      |      |         |     |     |
| Trader Joes - Organic Dry                  | 152   | 8g   | 11g  | 4g   | 0mg  | 76mg    | 2g  | 1g  |
| Roasted & Unsalted                         |       |      |      |      |      |         |     |     |
| Cashews, 0.2 cup, 30 g                     |       |      |      |      |      |         |     |     |
| Olive oil - Organic Olive Oil,<br>0.5 tbsp | 60    | 0g   | 7g   | 0g   | 0mg  | 0mg     | 0g  | 0g  |
| Trader Joe's - Jasmine                     | 180   | 37g  | 0g   | 2g   | 0mg  | 10mg    | 0g  | 3g  |
| Brown Rice, 3/4 cup cooked                 |       |      |      |      |      |         |     |     |
| Trader Joes - Organic                      | 25    | 4g   | 0g   | 2g   | 0mg  | 20mg    | 1g  | Зg  |
| Broccoli Florets, 85 g                     |       |      |      |      |      |         |     |     |
| Wegmans - Extra Firm Tofu -                | 200   | 5g   | 10g  | 20g  | 0mg  | 0mg     | 0g  | 3g  |
| Organic, 1/2 of pkg                        |       |      |      |      |      |         |     |     |
| Snacks                                     |       |      |      |      |      |         |     |     |
| Trader Joes - Cashew Butter                | 210   | 9g   | 16g  | 6g   | 0mg  | 0mg     | 2g  | 1g  |
| Unsalted, 2 Tbsp (10 am)                   |       |      |      |      |      |         |     |     |
| Veggie Caesar Salad, 1                     | 199   | 10g  | 16g  | 5g   | 0mg  | 137mg   | 1g  | 4g  |
| serving(s) (2 pm)                          |       | _    | _    | _    | _    | _       | -   | _   |
| Trader Joes - Roasted,                     | 170   | 5g   | 15g  | 7g   | 0mg  | 0mg     | 1g  | 4g  |
| Unsalted Almonds, 0.25 cup                 |       |      |      |      |      |         |     |     |
| (2 pm)                                     |       |      |      |      |      |         |     |     |
| TOTAL:                                     | 2,426 | 254g | 106g | 112g | 60mg | 1,678mg | 60g | 49g |

| <b></b>                          | <u> </u> |       |     |         |         |         | -      |       |
|----------------------------------|----------|-------|-----|---------|---------|---------|--------|-------|
|                                  | Calories | Carbs | Fat | Protein | Cholest | Sodium  | Sugars | Fiber |
| Breakfast – 8am                  |          |       |     |         | 1       |         |        |       |
| Olive Oil, 0.25 tbsp             | 30       | 0g    | 3g  | 0g      | 0mg     | 0mg     | 0g     | 0g    |
| Wegmans - Whole Wheat            | 190      | 35g   | 5g  | 6g      | 0mg     | 370mg   | 0g     | 5g    |
| Multigrain Tortillas, 1 wrap     |          |       |     |         |         |         |        |       |
| Bell Pepper - Red Bell           | 13       | 3g    | 0g  | 0g      | 0mg     | 1mg     | 1g     | 0g    |
| Pepper Chopped, 0.33 cup         |          |       |     |         |         |         |        |       |
| chopped                          |          |       |     |         |         |         |        |       |
| Wegmans - Sharp Cheddar,         | 132      | 1g    | 11g | 8g      | 36mg    | 216mg   | 0g     | 0g    |
| 1.2 oz                           |          |       |     |         |         |         |        |       |
| Sprouts - Organic Refried        | 110      | 20g   | 0g  | 7g      | 0mg     | 360mg   | 0g     | 7g    |
| Beans (Pinto), 0.5 cup (130g)    |          |       |     |         |         |         |        |       |
| Skim Milk - Skim Milk, 1 cup     | 80       | 11g   | 0g  | 8g      | 5mg     | 110mg   | 11g    | 0g    |
| Lunch – 12 pm                    |          |       |     |         |         |         |        |       |
| Olive oil - Organic Olive Oil, 1 | 120      | 0g    | 14g | 0g      | 0mg     | 0mg     | 0g     | 0g    |
| tbsp                             |          | -     | _   | _       | _       | _       | _      | _     |
| Trader Joe's - Cashews,          | 170      | 8g    | 14g | 5g      | 0mg     | 5mg     | 2g     | 1g    |
| Roasted & Unsalted, 1 oz         |          | -     | •   | -       | -       | -       | •      | -     |
| Wegmans Organic -                | 264      | 48g   | 2g  | 17g     | 0mg     | 312mg   | 0g     | 17g   |
| Garbanzo Beans, 1.2 cup          |          | -     | -   | -       | -       | -       | •      | •     |
| (130g)                           |          |       |     |         |         |         |        |       |
| Raw - Cauliflower Head,          | 48       | 10g   | 0g  | 4g      | 0mg     | 57mg    | 4g     | 4g    |
| Large, 0.33 large head           |          |       | -   | _       | _       |         | _      |       |
| Dinner – 5 pm                    |          |       |     |         |         |         |        |       |
| Wegmans - Organic                | 150      | 27g   | 0g  | 11g     | 0mg     | 195mg   | 0g     | 6g    |
| Cannellini Beans*, 0.75 cup      |          |       |     |         |         |         |        |       |
| (130g)                           |          |       |     |         |         |         |        |       |
| Wegman's - Pasta Small           | 400      | 82g   | 2g  | 14g     | mg      | 0mg     | 4g     | 4g    |
| Shells, 1 cup dry                |          | -     | -   | -       | -       | -       | •      | -     |
| Dave's Gourmet - Butternut       | 150      | 26g   | 6g  | 2g      | 15mg    | 537mg   | 14g    | 5g    |
| Squash Pasta Sauce, 0.75         |          | 0     | Ū   | U       | Ū       | Ū.      | °,     | Ū.    |
| cup                              |          |       |     |         |         |         |        |       |
| Snacks                           |          |       |     |         |         |         |        |       |
| Trader Joes - Roasted,           | 340      | 10g   | 30g | 14g     | 0mg     | 0mg     | 2g     | 8g    |
| Unsalted Almonds, 0.5 cup (2     |          | -     | -   | _       |         | -       |        | -     |
| pm)                              |          |       |     |         |         |         |        |       |
| TOTAL:                           | 2,197    | 281g  | 87g | 96g     | 56mg    | 2,163mg | 38g    | 57g   |

#### <u>Wednesday</u>

### <u>Thursday</u>

|                                | Calories | Carbs | Fat | Protein            | Cholest | Sodium   | Sugars | Fiber |
|--------------------------------|----------|-------|-----|--------------------|---------|----------|--------|-------|
| Breakfast – 8 am               |          |       |     |                    |         |          |        |       |
| Trader Joes - Freeze dried     | 60       | 15g   | 1g  | 1g                 | mg      | mg       | 8g     | 5g    |
| berry medley, 0.5 bag (34g)    |          | =-    |     |                    |         |          |        | 1.5   |
| Trader Joe's - Organic Gluten  | 440      | 76g   | 8g  | 16g                | Omg     | 400mg    | 2g     | 12g   |
| Free Oatmeal Classic, 2        |          |       |     |                    |         |          |        |       |
| Container (57g)                | 70       | 4 ~   | 6.7 | 2.5                | 0.000   | E rea er | 0.7    | 2.5   |
| Spectrum - Cold Milled         | 70       | 49    | бġ  | - Sg               | Ung     | ong      | Ug     | зg    |
| Elaxeood 2 Then (14g)          |          |       |     |                    |         |          |        |       |
| Lunch 12 pm                    |          |       |     |                    |         |          |        | l     |
| Sauce - Wegmans Terivaki 1     | 20       | 50    | 0   | 10                 | ma      | 255mg    | 40     | 0     |
| sauce - Weginans Tenyaki, T    | 20       | Jy    | y   | ig                 | ing     | 255mg    | 4g     | y     |
| Stew Beef - Stew Beef 0.3      | 204      | 00    | 80  | 200                | 78ma    | 84ma     | 00     | 00    |
| blew been - blew been, 0.5     | 204      | og    | Ug  | 209                | 7 oning | OHING    | Ug     | og    |
| Edamame - Shelled              | 100      | 90    | 30  | 80                 | ma      | 30mg     | 10     | 4a    |
| Sovbeans (Frozen), 0.5 Cup     |          |       | - 9 | °9                 | 9       | oomg     | .9     | .9    |
| (75g)                          |          |       |     |                    |         |          |        |       |
| Wegmans - Steamables           | 240      | 46g   | 4g  | 7g                 | 0mg     | 420mg    | g      | 4g    |
| Whole Grain Brown Rice,        |          | U     | 0   | Ŭ                  | Ű       | 5        | Ŭ      | 0     |
| Quinoa & Lentils, 1 cup        |          |       |     |                    |         |          |        |       |
| Dinner – 5 pm                  |          |       |     |                    |         |          |        |       |
| Wegmans - Extra Firm Tofu -    | 200      | 5g    | 10g | 20g                | 0mg     | 0mg      | 0g     | 3g    |
| Organic, 1/2 of pkg            |          | _     | _   | _                  | _       | _        |        | -     |
| Trader Joes - Organic          | 25       | 4g    | 0g  | 2g                 | 0mg     | 20mg     | 1g     | Зg    |
| Broccoli Florets, 85 g         |          |       |     |                    |         |          |        |       |
| Trader Joe's - Jasmine         | 180      | 37g   | 0g  | 2g                 | 0mg     | 10mg     | 0g     | Зg    |
| Brown Rice, 3/4 cup cooked     |          |       |     |                    |         |          |        |       |
| Olive oil - Organic Olive Oil, | 60       | 0g    | 7g  | 0g                 | 0mg     | 0mg      | 0g     | 0g    |
| 0.5 tbsp                       |          | -     |     |                    | -       |          | -      | -     |
| Trader Joes - Organic Dry      | 152      | 8g    | 11g | 4g                 | 0mg     | 76mg     | 2g     | 1g    |
| Roasted & Unsalted             |          |       |     |                    |         |          |        |       |
| Casnews, 0.2 cup, 30 g         | 40       | 0.5   | 0.7 | 4 ~                | 0.000   | 200      | 0.7    | 4     |
| Vvegmans - Sesame Garlic       | 40       | 9g    | Ug  | 1g                 | Umg     | 320mg    | 8g     | 1g    |
| Sauce, 2 lbsp.                 |          | l     |     |                    |         |          |        |       |
| Mamma Chia Chia Saugaza        | 70       | 10a   | 20  | 29                 | 0mg     | Ema      | 50     | 20    |
| Blackborny Bliss 1 pouch (2)   | 70       | TUg   | зg  | Zg                 | Ung     | Sing     | зy     | зg    |
| Diackberry biss, 1 pouch (2    |          |       |     |                    |         |          |        |       |
| Trader loss - Roasted          | 170      | 50    | 150 | 70                 | Oma     | Oma      | 10     | 40    |
| Unsalted Almonds 0.25 cup      | 170      | Jy    | iby | ' <del>'</del> ' ' | Ung     | Ung      | ig     | Ψy    |
| (2 pm)                         |          |       |     |                    |         |          |        |       |
| Trader Joes - Cashew Butter    | 210      | 9a    | 16a | 6a                 | 0ma     | 0mg      | 20     | 1α    |
| Unsalted, 2 Tbsp (10 am)       | 2.0      | ~9    |     | 59                 | Sing    | Sing     | -9     | '9    |
| TOTAL:                         | 2,241    | 242q  | 92q | 109g               | 78mg    | 1,625mg  | 34q    | 47q   |

| F | r | i | d | а | y |
|---|---|---|---|---|---|
|   |   |   |   |   |   |

|                                                               | Calories | Carbs | Fat | Protein | Cholest | Sodium | Sugars | Fiber |
|---------------------------------------------------------------|----------|-------|-----|---------|---------|--------|--------|-------|
| Breakfast – 8 am                                              |          |       |     |         |         |        |        |       |
| Wegmans - Roasted Tomato<br>Salsa, 2 Tbsp                     | 10       | 2g    | 0g  | 0g      | mg      | 220mg  | 1g     | g     |
| Large Egg - One Large Egg,<br>1.5 each                        | 105      | 0g    | 8g  | 9g      | 0mg     | 98mg   | Og     | 0g    |
| Monterey Mushrooms -<br>Whole Mushrooms, 3 oz                 | 20       | 2g    | 0g  | 3g      | 0mg     | 15mg   | g      | 1g    |
| Wegmans - Sharp Cheddar,<br>1.2 oz                            | 132      | 1g    | 11g | 8g      | 36mg    | 216mg  | Og     | 0g    |
| Bell Pepper - Red Bell<br>Pepper Chopped, 0.33 cup<br>chopped | 13       | 3g    | Og  | Og      | 0mg     | 1mg    | 1g     | 0g    |
| Wegmans - Whole Wheat<br>Multigrain Tortillas, 1 wrap         | 190      | 35g   | 5g  | 6g      | 0mg     | 370mg  | Og     | 5g    |
| Olive Oil, 0.25 tbsp                                          | 30       | 0g    | 3g  | 0g      | 0mg     | 0mg    | 0g     | 0g    |
| Lunch – <i>12 pm</i>                                          |          |       |     |         |         |        |        |       |
| Raw - Cauliflower Head,<br>Large, 0.33 large head             | 48       | 10g   | 0g  | 4g      | 0mg     | 57mg   | 4g     | 4g    |

| Wegmans Organic -                 | 264   | 48g         | 2g  | 17g | 0mg  | 312mg   | 0g  | 17g |
|-----------------------------------|-------|-------------|-----|-----|------|---------|-----|-----|
| Garbanzo Beans, 1.2 cup<br>(130g) |       |             |     |     |      |         |     |     |
| Trader Joe's - Cashews,           | 170   | 8g          | 14g | 5g  | 0mg  | 5mg     | 2g  | 1g  |
| Roasted & Unsalted, 1 oz          |       |             |     |     |      |         |     |     |
| Olive oil - Organic Olive Oil, 1  | 120   | 0g          | 14g | 0g  | 0mg  | 0mg     | 0g  | 0g  |
| tosp                              |       |             |     |     |      |         |     |     |
| Dinner – 5 pm                     | 450   |             |     |     | 1 45 | 507     |     | -   |
| Dave's Gourmet - Butternut        | 150   | 26g         | 6g  | 2g  | 15mg | 537mg   | 14g | 5g  |
| Squash Fasia Sauce, 0.75          |       |             |     |     |      |         |     |     |
| Ucamon'a Dasta Small              | 400   | 92 <i>a</i> | 29  | 140 |      | 0mg     | 40  | 10  |
| Shells 1 cup dry                  | 400   | ozy         | zg  | 149 | ing  | Ung     | 49  | 4g  |
| Wegmans - Organic                 | 150   | 270         | 00  | 110 | Oma  | 105mg   | 00  | 60  |
| Cannellini Beans* 0.75 cun        | 150   | 2/9         | Ug  | iig | ong  | raong   | Ug  | Ug  |
| (130g)                            |       |             |     |     |      |         |     |     |
| Snacks                            |       |             |     |     |      |         |     |     |
| Trader Joes - Organic Raw         | 170   | 6g          | 15g | 6g  | 0mg  | 0mg     | 1g  | 4g  |
| Almonds, 0.25 cup (30g) (2        | _     | - 3         | - 3 | - 5 | - 5  | - 5     | 5   | 5   |
| pm)                               |       |             |     |     |      |         |     |     |
| Trader Joe's - Freeze Dried       | 130   | 31g         | 0g  | 2g  | mg   | mg      | 27g | 2g  |
| Banana Slices,                    |       | _           | _   | _   | _    | _       | -   | _   |
| Unsweetened, 35 gram (10          |       |             |     |     |      |         |     |     |
| am)                               |       |             |     |     |      |         |     |     |
| Trader Joes - Cashew Butter       | 210   | 9g          | 16g | 6g  | 0mg  | 0mg     | 2g  | 1g  |
| Unsalted, 2 Tbsp (10 am)          |       |             |     |     |      |         |     |     |
| TOTAL:                            | 2,312 | 290g        | 96g | 93g | 51mg | 2,026mg | 56g | 50g |

|                               | Calories | Carbs | Fat | Protein | Cholest | Sodium | Sugars | Fiber |
|-------------------------------|----------|-------|-----|---------|---------|--------|--------|-------|
| Breakfast – 8 am              |          |       |     |         |         |        |        |       |
| Skim Milk - Skim Milk, 1 cup  | 80       | 11g   | 0g  | 8g      | 5mg     | 110mg  | 11g    | 0g    |
| Sprouts - Organic Refried     | 110      | 20g   | 0g  | 7g      | 0mg     | 360mg  | 0g     | 7g    |
| Beans (Pinto), 0.5 cup (130g) |          |       |     |         |         |        |        |       |
| Olive Oil, 0.25 tbsp          | 30       | 0g    | 3g  | 0g      | 0mg     | 0mg    | 0g     | 0g    |
| Wegmans - Whole Wheat         | 190      | 35g   | 5g  | 6g      | 0mg     | 370mg  | 0g     | 5g    |
| Multigrain Tortillas, 1 wrap  |          | _     |     | _       | _       | _      |        | _     |
| Bell Pepper - Red Bell        | 13       | 3g    | 0g  | 0g      | 0mg     | 1mg    | 1g     | 0g    |
| Pepper Chopped, 0.33 cup      |          |       |     |         |         |        |        |       |
| chopped                       |          |       |     |         |         |        |        |       |
| Wegmans - Sharp Cheddar,      | 132      | 1g    | 11g | 8g      | 36mg    | 216mg  | 0g     | 0g    |
| 1.2 oz                        |          |       |     |         |         |        |        |       |
| Lunch – <i>12 pm</i>          |          |       |     |         |         |        |        |       |
| Fillippo Berrio - Grilled     | 255      | 6g    | 26g | 2g      | 0mg     | 510mg  | 5g     | 2g    |
| Vegetable Pesto, 0.38 cup     |          |       |     |         |         |        |        |       |
| Explore Cuisine - Green       | 400      | 70g   | 2g  | 24g     | 0mg     | 0mg    | 2g     | 6g    |
| Lentil Penne (Organic), 112 g |          |       |     |         |         |        |        |       |
| Dinner – 5 pm                 |          |       | -   | _       |         | -      |        | -     |
| Trader Joes - Organic         | 25       | 4g    | 0g  | 2g      | 0mg     | 20mg   | 1g     | Зg    |
| Broccoli Florets, 85 g        |          |       |     |         |         |        |        |       |
| Trader Joes - Organic Dry     | 152      | 8g    | 11g | 4g      | 0mg     | 76mg   | 2g     | 1g    |
| Roasted & Unsalted            |          |       |     |         |         |        |        |       |
| Cashews, 0.2 cup, 30 g        |          |       |     |         |         |        |        |       |
| Trader Joe's - Brown          | 160      | 35g   | 1g  | 3g      | 0mg     | 0mg    | 0g     | 2g    |
| Jasmine Rice, 45 grams        |          |       |     |         |         |        |        |       |
| Frozen Peas - Peas, 0.25 cup  | 25       | 6g    | 0g  | 2g      | 0mg     | 30mg   | 2g     | 3g    |
| Brown Sugar - Brown Sugar,    | 27       | 8g    | 0g  | 0g      | mg      | 2mg    | 8g     | g     |
| Dark, Organic, 1.5 tsp        |          |       |     |         |         |        |        |       |
| Coconut oil, 2 tsp            | 80       | 0g    | 9g  | 0g      | 0mg     | 0mg    | 0g     | 0g    |
| Thai Kitchen - Red - Curry    | 8        | 2g    | 0g  | 0g      | 0mg     | 143mg  | 0g     | 0g    |
| Paste, 1.5 tsp                |          |       |     |         |         |        |        |       |
| Thrive Market - Coconut Milk  | 60       | 2g    | 6g  | g       | mg      | mg     | g      | g     |
| Lite, 0.25 container (360 gs  |          |       |     |         |         |        |        |       |
| ea.)                          |          |       |     |         |         |        |        |       |
| Chicken tenderloin - Chicken  | 100      | 0g    | 1g  | 25g     | mg      | mg     | g      | g     |
| breast tenderloin, 4 oz       |          |       |     |         |         |        |        |       |

#### Saturday

| Snacks                       |       |      |     |      |      |         |     |     |
|------------------------------|-------|------|-----|------|------|---------|-----|-----|
| Trader Joe's - Freeze Dried  | 130   | 31g  | 0g  | 2g   | mg   | mg      | 27g | 2g  |
| Banana Slices,               |       |      |     |      |      |         |     |     |
| Unsweetened, 35 gram (10     |       |      |     |      |      |         |     |     |
| am)                          |       |      |     |      |      |         |     |     |
| Trader Joes - Organic Raw    | 170   | 6g   | 15g | 6g   | 0mg  | 0mg     | 1g  | 4g  |
| Almonds, 0.25 cup (30g) (10  |       |      | _   | _    | _    | _       | _   | _   |
| am)                          |       |      |     |      |      |         |     |     |
| Mamma Chia - Chia Squeeze    | 70    | 10g  | 3g  | 2g   | 0mg  | 0mg     | 7g  | 3g  |
| Vitality Snack - Wild        |       |      |     |      |      |         |     |     |
| Raspberry, 1 pouch (2 pm)    |       |      |     |      |      |         |     |     |
| Mamma Chia - Chia Squeeze    | 70    | 10g  | 3g  | 2g   | 0mg  | 5mg     | 5g  | 3g  |
| Blackberry Bliss, 1 pouch (2 |       |      | _   | _    | _    | _       | -   | _   |
| pm)                          |       |      |     |      |      |         |     |     |
| TOTAL:                       | 2,287 | 268g | 96g | 103g | 41mg | 1,843mg | 72g | 41g |

|                                                                                          | Calories | Carbs | Fat | Protein | Cholest | Sodium  | Sugars | Fiber |
|------------------------------------------------------------------------------------------|----------|-------|-----|---------|---------|---------|--------|-------|
| Breakfast – 8 am                                                                         |          |       |     | •       | •       |         |        |       |
| Skim Milk - Skim Milk, 1 cup                                                             | 80       | 11g   | 0g  | 8g      | 5mg     | 110mg   | 11g    | 0g    |
| Trader Joe's - Freeze Dried<br>Banana Slices,<br>Unsweetened, 35 gram                    | 130      | 31g   | Og  | 2g      | mg      | mg      | 27g    | 2g    |
| Spectrum - Cold Milled<br>Organic Premium Ground<br>Flaxseed, 2 Tbsp. (14g)              | 70       | 4g    | 6g  | 3g      | 0mg     | 5mg     | 0g     | 3g    |
| Trader Joe's - Organic Gluten<br>Free Oatmeal Classic, 2<br>container (57g)              | 440      | 76g   | 8g  | 16g     | 0mg     | 400mg   | 2g     | 12g   |
| Lunch – 12 pm                                                                            |          |       | 1   |         |         |         |        | -     |
| Trader Joe's - Paneer Tikka<br>Masala (Updated), 1<br>container                          | 410      | 39g   | 23g | 15g     | 30mg    | 760mg   | 6g     | 6g    |
| Dinner – 5 pm                                                                            |          |       |     |         |         |         |        |       |
| Chicken tenderloin - Chicken<br>breast tenderloin, 4 oz                                  | 100      | 0g    | 1g  | 25g     | mg      | mg      | g      | g     |
| Thrive Market - Coconut Milk<br>Lite, 0.25 container (360 gs<br>ea.)                     | 60       | 2g    | 6g  | g       | mg      | mg      | g      | g     |
| Thai Kitchen - Red - Curry<br>Paste, 1.5 tsp                                             | 8        | 2g    | Og  | Og      | 0mg     | 143mg   | 0g     | 0g    |
| Coconut oil, 2 tsp                                                                       | 80       | 0g    | 9g  | 0g      | 0mg     | 0mg     | 0g     | 0g    |
| Brown Sugar - Brown Sugar,<br>Dark, Organic, 1.5 tsp                                     | 27       | 8g    | Og  | Og      | mg      | 2mg     | 8g     | g     |
| Frozen Peas - Peas, 0.25 cup                                                             | 25       | 6g    | 0g  | 2g      | 0mg     | 30mg    | 2g     | 3g    |
| Trader Joe's - Brown<br>Jasmine Rice, 45 grams                                           | 160      | 35g   | 1g  | 3g      | 0mg     | 0mg     | 0g     | 2g    |
| Trader Joes - Organic Dry<br>Roasted & Unsalted<br>Cashews, 0.2 cup, 30 g                | 152      | 8g    | 11g | 4g      | 0mg     | 76mg    | 2g     | 1g    |
| Trader Joes - Organic<br>Broccoli Florets, 85 g                                          | 25       | 4g    | 0g  | 2g      | 0mg     | 20mg    | 1g     | 3g    |
| Snacks                                                                                   |          |       |     |         |         |         |        |       |
| Trader Joes - Organic Raw<br>Almonds, 0.25 cup (30g) ( <i>10</i><br><i>am</i> )          | 170      | 6g    | 15g | 6g      | 0mg     | 0mg     | 1g     | 4g    |
| Justin's - Vanilla Almond<br>Butter, 32 g (2 <i>pm</i> )                                 | 200      | 10g   | 16g | 5g      | 0mg     | 65mg    | 7g     | 2g    |
| Mamma Chia - Chia Squeeze<br>Vitality Snack - Wild<br>Raspberry, 1 pouch ( <i>2 pm</i> ) | 70       | 10g   | 3g  | 2g      | 0mg     | Omg     | 7g     | 3g    |
| TOTAL:                                                                                   | 2,207    | 252g  | 99g | 93g     | 35mg    | 1,611mg | 74g    | 41g   |

<u>Sunday</u>

 Table 4. 1-Week FNP Diet Menu. Diet log for the first week of the metabolic study. Foods were recorded and computed in MyFitnessPal and formatted in Word.

#### **References:**

- 1. Hassler, D. M. *et al.* Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. *Science* **343**, (2014).
- 2. Niemantsverdriet, M. et al. High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals. Int. J. Radiat. Oncol. Biol. Phys. 83, 1291–1297 (2012).
- 3. Asaithamby, A. *et al.* Repair of HZE-Particle-Induced DNA Double-Strand Breaks in Normal Human Fibroblasts. *Radiat. Res.* **169**, 437–446 (2008).
- 4. Demontis, G. C. *et al.* Human Pathophysiological Adaptations to the Space Environment. *Front. Physiol.* **8**, (2017).
- 5. Hughson, R. L., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. *Nat. Rev. Cardiol.* **15**, 167–180 (2018).
- 6. Lane, H. W. *et al.* Comparison of ground-based and space flight energy expenditure and water turnover in middle-aged healthy male US astronauts. *Am. J. Clin. Nutr.* **65**, 4–12 (1997).
- 7. Stein, T. P. *et al.* Energy expenditure and balance during spaceflight on the space shuttle. *Am. J. Physiol.-Regul. Integr. Comp. Physiol.* **276**, R1739–R1748 (1999).
- 8. Dong, T. A. et al. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am. J. Med. 133, 901–907 (2020).
- 9. Malinowski, B. et al. Intermittent Fasting in Cardiovascular Disorders-An Overview. Nutrients 11, (2019).
- 10. Antoni, R., Johnston, K. L., Collins, A. L. & Robertson, M. D. Effects of intermittent fasting on glucose and lipid metabolism. *Proc. Nutr. Soc.* **76**, 361–368 (2017).
- 11. Afshinnekoo, E. *et al.* Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. *Cell* **183**, 1162–1184 (2020).
- 12. Sutton, E. F. *et al.* Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. *Cell Metab.* **27**, 1212-1221.e3 (2018).
- 13. Reynolds, M. Nasa can't send humans to Mars until it gets the food right. Wired UK (2018).
- 14. Trappe, S. *et al.* Exercise in space: human skeletal muscle after 6 months aboard the International Space Station. *J. Appl. Physiol. Bethesda Md* 1985 **106**, 1159–1168 (2009).
- 15. Trumbo, P., Schlicker, S., Yates, A. A., Poos, M., & Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. **102**, 1621–1630 (2002).
- 16.Smith, S. M. & Zwart, S. R. Chapter 3 Nutritional Biochemistry Of Spaceflight. in *Advances in Clinical Chemistry* vol. 46 87–130 (Elsevier, 2008).
- 17. Smith, S. M., Zwart, S. R. & Heer, M. Human Adaptation to Spaceflight: The Role of Nutrition. 151.
- 18. Aragon, A. A. & Schoenfeld, B. J. Nutrient timing revisited: is there a post-exercise anabolic window? *J. Int. Soc. Sports Nutr.* **10**, 5 (2013).
- 19. Areta, J. L. *et al.* Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. *J. Physiol.* **591**, 2319–2331 (2013).
- 20. Mamerow, M. M. *et al.* Dietary Protein Distribution Positively Influences 24-h Muscle Protein Synthesis in Healthy Adults123. *J. Nutr.* **144**, 876–880 (2014).
- 21. Casperson, S. L., Sheffield-Moore, M., Hewlings, S. J. & Paddon-Jones, D. Leucine supplementation chronically improves muscle protein synthesis in older adults consuming the RDA for protein. *Clin. Nutr. Edinb. Scotl.* **31**, 512–519 (2012).
- 22. Churchward-Venne, T. A. *et al.* Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. *J. Physiol.* **590**, 2751–2765 (2012).
- 23. Churchward-Venne, T. A. *et al.* Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. *Am. J. Clin. Nutr.* **99**, 276–286 (2014).
- Trappe, T. A., Burd, N. A., Louis, E. S., Lee, G. A. & Trappe, S. W. Influence of concurrent exercise or nutrition countermeasures on thigh and calf muscle size and function during 60 days of bed rest in women. *Acta Physiol.* 191, 147–159 (2007).
- 25. Stuart, C. A., Shangraw, R. E., Peters, E. J. & Wolfe, R. R. Effect of dietary protein on bed-rest-related changes in whole-body-protein synthesis. *Am. J. Clin. Nutr.* **52**, 509–514 (1990).

26. BIOMEDICAL RESULTS OF SKYLAB - Cover. 872.

- 27. Gozzelino, R. & Arosio, P. Iron Homeostasis in Health and Disease. Int. J. Mol. Sci. 17, 130 (2016).
- 28.Smith, S. M. Red blood cell and iron metabolism during space flight. Nutrition 18, 864–866 (2002).
- 29. Udden, M. M., Driscoll, T. B., Pickett, M. H., Leach-Huntoon, C. S. & Alfrey, C. P. Decreased production of red blood cells in human subjects exposed to microgravity. *J. Lab. Clin. Med.* **125**, 442–449 (1995).
- 30. Alfrey, C. P., Udden, M. M., Leach-Huntoon, C., Driscoll, T. & Pickett, M. H. Control of red blood cell mass in spaceflight. *J. Appl. Physiol. Bethesda Md* 1985 **81**, 98–104 (1996).
- 31.Zwart, S. R. *et al.* Amino acid supplementation alters bone metabolism during simulated weightlessness. *J. Appl. Physiol. Bethesda Md 1985* **99**, 134–140 (2005).
- 32.Zwart, S. R., Hargens, A. R. & Smith, S. M. The ratio of animal protein intake to potassium intake is a predictor of bone resorption in space flight analogues and in ambulatory subjects. *Am. J. Clin. Nutr.* **80**, 1058–1065 (2004).
- 33. Breslau, N. A., Brinkley, L., Hill, K. D. & Pak, C. Y. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. *J. Clin. Endocrinol. Metab.* **66**, 140–146 (1988).
- 34. Kaneko, K. *et al.* Urinary calcium and calcium balance in young women affected by high protein diet of soy protein isolate and adding sulfur-containing amino acids and/or potassium. *J. Nutr. Sci. Vitaminol. (Tokyo)* **36**, 105–116 (1990).
- 35. Lim, M. T., Pan, B. J., Toh, D. W. K., Sutanto, C. N. & Kim, J. E. Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Nutrients* **13**, (2021).
- 36. Messina, M., Lynch, H., Dickinson, J. M. & Reed, K. E. No Difference Between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise. *Int. J. Sport Nutr. Exerc. Metab.* 28, 674–685 (2018).
- 37. Dolkas, C. B. & Greenleaf, J. E. Insulin and glucose responses during bed rest with isotonic and isometric exercise. *J. Appl. Physiol.* **43**, 1033–1038 (1977).
- 38. Hughson, R., Greaves, D. K. & Arbeille, P. Vascular Adaptations to Spaceflight: Results from the Vascular Series Experiments. *Rev. Cuba. Investig. Bioméd.* **38**, (2019).
- 39. Johnson, A. M. F. & Olefsky, J. M. The origins and drivers of insulin resistance. Cell 152, 673-684 (2013).
- 40. Mazzucco, S., Agostini, F. & Biolo, G. Inactivity-mediated insulin resistance is associated with upregulated proinflammatory fatty acids in human cell membranes. *Clin. Nutr.* **29**, 386–390 (2010).
- 41. Garrett-Bakelman, F. E. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. *Hum. Physiol.* 23 (2019).
- 42. Bischoff, S. C. *et al.* Intestinal permeability a new target for disease prevention and therapy. *BMC Gastroenterol.* **14**, 189 (2014).
- 43. Farré, R., Fiorani, M., Abdu Rahiman, S. & Matteoli, G. Intestinal Permeability, Inflammation and the Role of Nutrients. *Nutrients* **12**, 1185 (2020).
- 44. Yao, Y. *et al.* The role of short-chain fatty acids in immunity, inflammation and metabolism. *Crit. Rev. Food Sci. Nutr.* **0**, 1–12 (2020).
- 45. Macfarlane, S., Cleary, S., Bahrami, B., Reynolds, N. & Macfarlane, G. T. Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double-blind, placebo-controlled crossover study. *Aliment. Pharmacol. Ther.* **38**, 804–816 (2013).
- 46. D'Souza, M. S. *et al.* From Fad to Fact: Evaluating the Impact of Emerging Diets on the Prevention of Cardiovascular Disease. *Am. J. Med.* **133**, 1126–1134 (2020).
- 47. Kephart, W. C. *et al.* The Three-Month Effects of a Ketogenic Diet on Body Composition, Blood Parameters, and Performance Metrics in CrossFit Trainees: A Pilot Study. *Sports* **6**, (2018).
- 48. Kwiterovich, P. O., Vining, E. P. G., Pyzik, P., Skolasky, R. & Freeman, J. M. Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. *JAMA* **290**, 912–920 (2003).
- 49. Retterstøl, K., Svendsen, M., Narverud, I. & Holven, K. B. Effect of low carbohydrate high fat diet on LDL cholesterol and gene expression in normal-weight, young adults: A randomized controlled study. *Atherosclerosis* **279**, 52–61 (2018).
- 50. da Silveira, W. A. *et al.* Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. *Cell* **183**, 1185-1201.e20 (2020).
- 51. Pietrzyk, R. A., Jones, J. A., Sams, C. F. & Whitson, P. A. Renal stone formation among astronauts. *Aviat. Space Environ. Med.* **78**, A9-13 (2007).

- 52. Zerwekh, J. E. Nutrition and renal stone disease in space. *Nutr. Burbank Los Angel. Cty. Calif* **18**, 857–863 (2002).
- 53. Choi, J. N. *et al.* Renal Stone Associated with the Ketogenic Diet in a 5-Year Old Girl with Intractable Epilepsy. *Yonsei Med. J.* **51**, 457–459 (2010).
- 54. Sampath, A., Kossoff, E. H., Furth, S. L., Pyzik, P. L. & Vining, E. P. G. Kidney Stones and the Ketogenic Diet: Risk Factors and Prevention. J. Child Neurol. 22, 375–378 (2007).
- 55. Heikura, I. A. *et al.* A Short-Term Ketogenic Diet Impairs Markers of Bone Health in Response to Exercise. *Front. Endocrinol.* **10**, (2020).
- 56. Mozaffarian, D. & Wu, J. H. Y. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on Risk Factors, Molecular Pathways, and Clinical Events. *J. Am. Coll. Cardiol.* **58**, 2047–2067 (2011).
- 57. Faeh, D. *et al.* Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. *Diabetes* **54**, 1907–1913 (2005).
- 58. Rivellese, A. A. *et al.* Long-term effects of fish oil on insulin resistance and plasma lipoproteins in NIDDM patients with hypertriglyceridemia. *Diabetes Care* **19**, 1207–1213 (1996).
- 59. Patel, Z. S. *et al.* Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. *Npj Microgravity* **6**, 1–13 (2020).
- 60.Zwart, S. R., Pierson, D., Mehta, S., Gonda, S. & Smith, S. M. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 25, 1049–1057 (2010).
- 61. Castro-González, M. I. & Méndez-Armenta, M. Heavy metals: Implications associated to fish consumption. *Environ. Toxicol. Pharmacol.* **26**, 263–271 (2008).
- 62. Simopoulos, A. P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. *Nutrients* **8**, 128 (2016).
- 63. Simopoulos, A. P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. *Exp. Biol. Med. Maywood NJ* 233, 674–688 (2008).
- 64. Michaëlsson, K., Lithell, H., Vessby, B. & Melhus, H. Serum retinol levels and the risk of fracture. *N. Engl. J. Med.* **348**, 287–294 (2003).
- 65. Melhus, H. *et al.* Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture. *Ann. Intern. Med.* **129**, 770–778 (1998).
- 66.Smith, S. M., Zwart, S. R., Block, G., Rice, B. L. & Davis-Street, J. E. The Nutritional Status of Astronauts Is Altered after Long-Term Space Flight Aboard the International Space Station. *J. Nutr.* **135**, 437–443 (2005).
- 67. Richter, C. Reactive oxygen and DNA damage in mitochondria. *Mutat. Res.* 275, 249–255 (1992).
- 68. Orlando, P. *et al.* Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes. *Redox Rep. Commun. Free Radic. Res.* **23**, 136–145 (2018).
- 69. Raygan, F., Rezavandi, Z., Dadkhah Tehrani, S., Farrokhian, A. & Asemi, Z. The effects of coenzyme Q10 administration on glucose homeostasis parameters, lipid profiles, biomarkers of inflammation and oxidative stress in patients with metabolic syndrome. *Eur. J. Nutr.* **55**, 2357–2364 (2016).
- 70.Samimi, M. *et al.* The effects of coenzyme Q10 supplementation on glucose metabolism and lipid profiles in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. *Clin. Endocrinol.* (*Oxf.*) 86, 560–566 (2017).
- 71. Gholnari, T. *et al.* The Effects of Coenzyme Q10 Supplementation on Glucose Metabolism, Lipid Profiles, Inflammation, and Oxidative Stress in Patients With Diabetic Nephropathy: A Randomized, Double-Blind, Placebo-Controlled Trial. *J. Am. Coll. Nutr.* **37**, 188–193 (2018).
- 72. Fallah, M., Askari, G., Soleimani, A., Feizi, A. & Asemi, Z. Clinical trial of the effects of coenzyme Q10 supplementation on glycemic control and markers of lipid profiles in diabetic hemodialysis patients. *Int. Urol. Nephrol.* **50**, 2073–2079 (2018).
- 73. Hidaka, T., Fujii, K., Funahashi, I., Fukutomi, N. & Hosoe, K. Safety assessment of coenzyme Q10 (CoQ10). *BioFactors Oxf. Engl.* **32**, 199–208 (2008).
- 74. Di Lorenzo, A. *et al.* Clinical Evidence for Q10 Coenzyme Supplementation in Heart Failure: From Energetics to Functional Improvement. *J. Clin. Med.* **9**, (2020).
- 75. Zhu, Z.-G. *et al.* The efficacy and safety of coenzyme Q10 in Parkinson's disease: a meta-analysis of randomized controlled trials. *Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol.* **38**, 215–224 (2017).

- 76. Fernández-Lázaro, D. *et al.* Modulation of Exercise-Induced Muscle Damage, Inflammation, and Oxidative Markers by Curcumin Supplementation in a Physically Active Population: A Systematic Review. *Nutrients* 12, (2020).
- 77. Jalali, M. *et al.* The effects of curcumin supplementation on liver function, metabolic profile and body composition in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. *Complement. Ther. Med.* **48**, 102283 (2020).
- 78. Schreurs, A.-S. *et al.* Dried plum diet protects from bone loss caused by ionizing radiation. *Sci. Rep.* **6**, 21343 (2016).
- 79. Poulose, S. M. *et al.* Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of 56Fe particles. *Life Sci. Space Res.* **12**, 16–23 (2017).
- 80. Guan, J. *et al.* Effects of Dietary Supplements on the Space Radiation-Induced Reduction in Total Antioxidant Status in CBA Mice. *Radiat. Res.* **165**, 373–378 (2006).
- 81. Arc-Chagnaud, C. *et al.* Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. *Front. Physiol.* **11**, 71 (2020).
- 82. Kaikkonen, J. *et al.* Effect of combined coenzyme Q10 and d-alpha-tocopheryl acetate supplementation on exercise-induced lipid peroxidation and muscular damage: a placebo-controlled double-blind study in marathon runners. *Free Radic. Res.* 29, 85–92 (1998).
- 83. Rinninella *et al.* Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. *Nutrients* **11**, 2393 (2019).
- 84. Miles, M. P. Probiotics and Gut Health in Athletes. Curr. Nutr. Rep. 9, 129–136 (2020).
- 85. Ohland, C. L. & Macnaughton, W. K. Probiotic bacteria and intestinal epithelial barrier function. *Am. J. Physiol. Gastrointest. Liver Physiol.* **298**, G807-819 (2010).
- 86. Jamshed, H. *et al.* Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. *Nutrients* **11**, (2019).
- 87. Tinsley, G. M. *et al.* Time-restricted feeding in young men performing resistance training: A randomized controlled trial. *Eur. J. Sport Sci.* **17**, 200–207 (2017).
- 88. Foote, J. A., Murphy, S. P., Wilkens, L. R., Basiotis, P. P. & Carlson, A. Dietary Variety Increases the Probability of Nutrient Adequacy among Adults. *J. Nutr.* **134**, 1779–1785 (2004).
- 89. Coburn, S. P. *et al.* Pyridoxic acid excretion during low vitamin B-6 intake, total fasting, and bed rest. *Am. J. Clin. Nutr.* **62**, 979–983 (1995).
- 90. Baecker, N., Frings-Meuthen, P., Smith, S. M. & Heer, M. Short-term high dietary calcium intake during bedrest has no effect on markers of bone turnover in healthy men. *Nutrition* **26**, 522–527 (2010).
- 91. Smith, S. M. *et al.* Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. *J. Bone Miner. Res.* **27**, 1896–1906 (2012).
- 92. Lane, H. W., Bourland, C., Barrett, A., Heer, M. & Smith, S. M. The Role of Nutritional Research in the Success of Human Space Flight. *Adv. Nutr.* **4**, 521–523 (2013).
- 93. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. *Dietary Reference Intakes for Calcium and Vitamin D*. (National Academies Press (US), 2011).
- 94. Institute of Medicine (US) Panel on Micronutrients. *Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc*. (National Academies Press (US), 2001).
- 95. Institute of Medicine (U.S.) *et al. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline*. (National Academies Press, 1998).
- 96. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium. *Dietary Reference Intakes for Sodium and Potassium*. (National Academies Press (US), 2019).