NCSU – Dept. of Chemistry – Lecture Demonstrations

Kinetics

Catalytic Decomposition of H₂O₂ – Elephant's Toothpaste

Description: The iodide ion (from KI or NaI) is used as a catalyst to decompose H_2O_2 , liberating water, oxygen and heat.

Materials:

30% H ₂ O ₂	1 L Graduated cylinder
KI or Nal	Food coloring
Liquid dish detergent	Large bin

Procedure:

- Pour 50 mL of 30% H₂O₂ in the 1 L graduated cylinder. Add 3 drops of food coloring. Add a small layer of liquid dish soap to the colored H₂O₂ solution by adding the soap drop wise down the side of the graduated cylinder.
- **2.** To generate toothpaste, add KI (or NaI) from a half-filled spatula to the H_2O_2 solution. Oxygen gas generated from this reaction will create large amounts of colored foam which will rise out of the graduated cylinder. To test for oxygen gas, a glowing wood splint can be reignited by placing it near the emerging foam.
- **3.** A variation of this demonstration for a higher level chemistry class which also demonstrates an enzymatic decomposition of H_2O_2 is detailed in the Lister reference.

Discussion: The decomposition of hydrogen peroxide yields oxygen and water. The reaction is catalyzed by the iodide ion (I^{1-}) from KI (or NaI) as shown in the two-step process below. The oxygen generated creates bubbles in the soap to produce a toothpaste like foam. A glowing splint can be used to test that the gas produced is oxygen. This experiment demonstrates the concept and utility of catalysts.

$$H_2O_2(aq) + I^{-}(aq) \rightarrow H_2O(l) + IO^{-}(aq)$$

IO⁻(aq) + $H_2O_2^{-}(aq) \rightarrow H_2O(l) + O_2(g) + I^{-}(aq)$

Overall Reaction: $2 H_2O_2(aq) \rightarrow 2 H_2O(l) + O_2(g)$ **NCSU – Dept. of Chemistry – Lecture Demonstrations**

Kinetics

Safety: Wear proper protective equipment including gloves and safety glasses when preparing and performing this demonstration. Concentrated hydrogen peroxide can cause burns.

Disposal: Remaining solution can be flushed down drain with plenty of water.

Reference:

Shakhashiri, B. Z. In Chemical Demonstrations: A Handbook for Teachers of Chemistry; The University of Wisconsin Press: 1983; Vol. 1, p 180-185.

Trujillo, C. A. J. Chem. Educ. 2005, 82, 855.

Conklin, A. R.; Kessinger, A. J. Chem. Educ. 1996, 73, 838.

Lister, T. In Classical Chemical Demonstrations; The Royal Society of Chemistry: 1996; p 145-146.

Video:

http://www.youtube.com/watch?v=tnB-uU3w6g8

http://www.youtube.com/watch?v=ezsur0L0L1c